In the last sections, we practiced adding and subtracting integers. Now, we will practice multiplying and dividing them.

Multiplication (Finding Products)

Consider the products:

\[
\begin{align*}
3 \cdot 4 &= \\
2 \cdot 4 &= \\
1 \cdot 4 &= \\
0 \cdot 4 &= \\
-1 \cdot 4 &= \\
-2 \cdot 4 &= \\
-3 \cdot 4 &= \\
\end{align*}
\]

Now, consider the products:

\[
\begin{align*}
3 \cdot (-4) &= \\
2 \cdot (-4) &= \\
1 \cdot (-4) &= \\
0 \cdot (-4) &= \\
-1 \cdot (-4) &= \\
-2 \cdot (-4) &= \\
-3 \cdot (-4) &= \\
\end{align*}
\]

Notice that the product of 2 numbers…

- With the **same sign** is positive.
- With the **opposite sign** is negative.

Example 1: Multiply.

a) \(-4 \cdot 7\)

b) \(-5(-6)\)

c) \(4 \ast 11\)

d) \(-12(9)(0)\)

e) \(-2(3)(4)\)

f) \(4(-1)(-2)(5)\)

g) \(-2(4)(-2)(-3)\)

Notice that if there is an even number of negative numbers being multiplied, the product will be __________. If there is an odd number, the product will be ________________!
a) 4^2

b) $(-4)^2$

c) -4^2

d) $(-2)^3$

e) -2^3

Commutative and Associative properties for multiplication are valid with integers the same as they are for whole numbers.

Division (Finding Quotients)

Recall that division is the reverse operation of multiplication, and multiplication can be used to check it. In other words, $\frac{12}{3} = 4$ because $4 \cdot 3 = 12$.

Due to the relationship with multiplication, the quotient of 2 numbers…

- With the **same sign** is positive.
- With the **opposite sign** is negative.

Example 3: Divide.

a) $80 \div 8$

b) $\frac{-72}{9}$

c) $\frac{-49}{-7}$

d) $\frac{0}{13}$

e) $\frac{6}{0}$
Example 4: Evaluate $\frac{x}{y}$ if $x = 56$ and $y = -8$.

Example 5: The number of farms in the U.S. dropped from 1,000,000 in 1998 to 600,000 in 2000. Find the average change in the number of farms from 1998 to 2000.

https://www.youtube.com/watch?v=rTMgdi0N7ug&list=PL9dj44OpeMZe_qNgDt_lqpnRjyGNkePq7&index=18

Order of Operations

Remember your order of operations: Grouping Symbols ~ Exponents ~ Mult/Div ~ Add/Subtract.

Also recall that when using exponents, the exponent ONLY applies to the base. For example, consider the following:

2^3

$(-3)^2$

-3^2

Finally, be careful when working with absolute value signs. For example, consider the below.

$-(-9) =$

$-|-9| =$

Example 6: Simplify the following.

a) $-2^4 \cdot 2$

b) $(-12) + 6 \div 3$

c) $| -4 + 2| \cdot 2^2$

d) $12 - 2(3 \cdot 2)$

e) $3(8 - 3) + (-4) - 10$

Example 7: Evaluate $-x^2$ if $x = -5$.

3