An ________________ is created by setting two algebraic expressions equal to each other. It is a statement of equality. In order for something to be an equation, there must be an “=” sign!

For example, 5x + 2 is an ____________, whereas 5x + 2 = 0 is an ________________.

When an equation involves a variable(s), we can try finding the value(s) of the variable(s) that make the equation a true statement. Finding these values is called solving the equation and any values of the variables that make the equation statement true are called solutions.

To solve a linear equation, we want to get the variable all by itself on one side so that:

\[x = \text{number} \quad \text{or} \quad \text{number} = x \] (either way, they are the same)

Properties of Equality

For all \(a, b, c \) are real numbers, if \(a = b \), then…

\[
\begin{align*}
 a + c & = b + c \\
 a - c & = b - c \\
 ac & = bc \quad \text{if } c \neq 0 \\
 \frac{a}{c} & = \frac{b}{c} \quad \text{if } c \neq 0
\end{align*}
\]

It comes down to this: What you do to one side of the equation, you MUST do to the other!!!

Solving a Linear Equation in 1 Variable

GOAL: Isolate the variable (get it by itself on one side)!

1. Start with the original equation.

2. Use **properties of equality** (above) to produce simpler ________________ (equations that have exactly the same set of solutions), working towards isolating the variable.

 - Use the distributive property to remove any parentheses and simplify.
 - Use addition/subtraction to get all terms containing a variable on one side and all constants on the other. Simplify.
 - Use multiplication/division to isolate the variable.

3. Check the solution in the original equation.
Example 5: Solve the following equations.

a) \(x + 4 = -6 \)

b) \(-2x = 36 \)

c) \(4x = 5x \)

d) \(-\frac{x}{4} = -30 \)

e) \(\frac{2}{5}x = 10 \)

f) \(-x = 45 \)

https://www.youtube.com/watch?v=vX8oLMdYj_s&list=PL9dj44OpeMZfqN4Kqgg7mF0AJOEN2Fzb8&index=4

Additional Examples:

\[
\frac{1}{2}v - 4 = \frac{5}{3}
\]

\[
3(z + 4) = -5(z - 9) + 23
\]

\[
2(3y - 6) = -4y + 18
\]
Application:

Translating into Algebra

When working on applications, we often have to translate words into an algebraic expression.

<table>
<thead>
<tr>
<th>Addition (+)</th>
<th>Subtraction (-)</th>
<th>Multiplication (*)</th>
<th>Division (/)</th>
<th>Equality (=)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum</td>
<td>Difference of</td>
<td>Product</td>
<td>Quotient</td>
<td>Equals</td>
</tr>
<tr>
<td>Plus</td>
<td>Minus</td>
<td>Times</td>
<td>Divide</td>
<td>Gives</td>
</tr>
<tr>
<td>Added to</td>
<td>Subtracted from</td>
<td>Multiply</td>
<td>Into</td>
<td>Is/Was</td>
</tr>
<tr>
<td>More than</td>
<td>Less than</td>
<td>Twice</td>
<td>Ratio</td>
<td>Yields</td>
</tr>
<tr>
<td>Increased by</td>
<td>Decreased by</td>
<td>Of</td>
<td>Divided by</td>
<td>Amounts to</td>
</tr>
<tr>
<td>Total</td>
<td>Less</td>
<td></td>
<td>Represents</td>
<td></td>
</tr>
</tbody>
</table>

Try these yourself:

Example 6: Write each of the following as an algebraic expression and simplify if possible.

a) The difference of a number and two, divided by 5.

b) The sum of 3 times a number and 10, subtracted from 9 times the same number

c) The product of a number and 15 is 30.