The perimeter of a square, \(p \), is always 4 times the length of a side, \(s \). In other words, \(p = 4s \). We can say that \(p \) varies \underline{\text{directly}} as (or with) \(s \). In other words, \(p \) is \underline{\text{directly proportional}} to \(s \).

Direct Variation

If there exists a nonzero constant, \(k \), such that \(y = kx \), then \(y \) \underline{varies \text{ directly proportional}} with \(x \) or \(y \) is \underline{directly proportional} to \(x \).

- \(k \) is called the \underline{constant of variation} or \underline{constant of proportionality}.

Example 1: If \(v \) varies directly with \(t \), find the constant of variation, \(k \), and then the direction variation equation.

\[v = 16 \text{ when } t = 2 \]

There are other types of variation where \(k \) is called the \underline{constant of variation} or \underline{constant of proportionality}.

Inverse Variation

If there exists a nonzero constant, \(k \), such that \(y = \frac{k}{x} \), then \(y \) \underline{varies \text{ inversely proportional}} with \(x \) or \(y \) is \underline{inversely proportional} to \(x \).

Example 2: If \(y \) varies inversely with \(\sqrt{x} \), find the constant of variation, \(k \), and then the inverse variation equation.

\[y = 4 \text{ when } x = 9 \]
Joint Variation

If there exists a nonzero constant, \(k \), such that \(y = kxz \), then \(y \) varies _______________\ with \(x \) and \(z \) or \(y \) is \textbf{jointly proportional} to \(x \) and \(z \). (The product may consist of more variables than just \(x \) and \(z \).)

\textit{Example 3:} Find the constant of variation, \(k \), and the joint variation equation if \(T \) varies jointly with \(x \) and the square of \(d \).

\[
T = 18 \quad \text{when} \quad x = 1 \quad \text{and} \quad d = 3
\]

Combined Variation

Variation equations may also consist of some combination of joint, direct, and inverse variation.

\textit{Example 4:} The maximum weight that a rectangular beam can support varies jointly as its width and the square of its height and inversely as its length. If a beam 1/3 foot wide, 1 foot high, and 10 feet long can support 3 tons, find how much weight a similar beam can support if it is 1 foot wide, 1/3 foot high, and 9 feet long.